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Some Notes about Outliers 

Dipl.- Ing. (FH) Klaus Hoffmann, Derikumer Weg 26, Neuss, 13.01.2024 

Introduc on 

The intended audience of this paper are engineers, prac oners, who are not primarily sta s cians 
and naturally interested readers. For this reason, this paper is based on a rather heuris c approach to 
make the explana ons easy to understand.  

The science of sta s cs deals with the collec on, analysis, interpreta on and presenta on of data. 
Effec ve interpreta on of data based on good procedures and thorough examina on. The goal of 
sta s cs is to gain an understanding of data. The interpreta on must come from the analyst and not 
only from the applied sta s c so ware. If the analyst can thoroughly grasp the basics of sta s cs, the 
analysing person can be more confident in the decisions. This essay deals with the occurrence of 
outliers, a sta s cal problem in which sta s cal knowledge alone is insufficient to understand. [1]  

One well- known historical example for an outlier is related to the ozone hole over the 
Antarc ca. Although conspicuous values were detected for years, the measured values were 
evaluated as obviously incorrectly measured viz. the values were interpreted as outliers and 
ignored. [2]  

One noted example for the possible effects of one single outlier is located in the field of 
economy, which is represented through the Per Capita Income (PCI) in the city of Heilbronn. This 
sta s c is distorted by one single billionaire who lives there. The existence of this one individual 
causes an increase of the PCI to be the highest in Germany. [3, 4, 5] 

This paper is focused on numerical, con nuous- valued data interval or ra o scales and univariate data 
sets, this means the evalua on of only one characteris c. The ar cle provides a conceptual overview 
of outliers with special focus on common techniques used to detect them. [29, 35] Whereat the 
detec ng for outliers is also defined as a part of data cleaning. [33] The trea se does not discuss the 
outlier management techniques of dele on, subs tu on and transforma on. [29] The focus is 
restricted to elementary univariate methods to give the reader a cardinal insight of the fundamentally 
different difficul es, solu on statements and to do calcula ons without the applica on of specialised 
so ware. This restric on represents also a line to the area of e.g., “machine learning” and many “data 
mining applica ons” which is also based on sta s cal methods. [31, 35]  

This paper is oriented on giving an overview of the applica ons of methods, mainly categorized into 
two types: informal methods and formal methods.  

Informal Methods 

Informal methods include several outlier labelling methods on the basis of the Gaussian- distribu on. 
In addi on, robust sta s cs for distribu ons that are not normal are also briefly depicted. The most 
frequent applied techniques are the Zscore, modified Zscore, MADE, Tukey’s method (Box- Plot) and other 
graphical methods to illustrate the outlying observa on. [35] In addi on the Q-Q- Plot and the 
histogram can support the analyst by visualising whether the distribu on is normal and to detect 
poten al outliers.  

Formal Methods 

Formal methods are test- based methods. [35] This paper deals with tests on the basis of the Gaussian- 
distribu on. Therefore, the men oned formal methods require a test based on an informal method or 
a formal method to examine whether the distribu on is normal. The Grubb’s and the Dixon- tests to 
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detect poten al outliers, are described in a rather brief form. The generalized extreme studen zed 
deviate test (ESD- Test) will be explained in more detail.  

Outliers  

In sta s cs, an outlier is a data point which does not fit to the rest of the data, it differs significantly 
from the mainstream of the other observa ons. [1, 6, 9, 35] It is a case - or a very few cases - that 
seems to be una ached to the rest of the distribu on. [32] An outlier may be defined as an observa on 
in a set of data that appears to be inconsistent with the remainder of that data set. [13] It has a low 
probability that it originates from the same sta s cal distribu on as the other observa ons in the data 
set. [30] An outlier, which is also called an extreme value or an unusual value, may be due to a variability 
in the measurement, an indica on of novel data, or it may be the result of experimental error; the 
la er are some mes excluded from the data set. [1, 6, 9] The suspicious value can be an indica on of 
exci ng possibility, but can also cause serious problems in sta s cal analyses. [6, 9, 33] An analyst who 
will be confronted with outliers will be forced to decide how to handle them. Outliers can distort 
sta s cal analyses and violate their assump ons. [9, 29] To maximize generalizability, outliers must be 
properly handled prior to data analysis regardless of the cause. Several sta s cal techniques can be 
used to detect, classify, and manage outliers. The presence of an excessive number of outliers should 
raise an alarm for researchers, as it may indicate serious problems with the sampling procedures or the 
conceptual defini on of the popula on of interest. [29] Removing outliers is legi mate only for specific 
reasons. Outliers can occur by chance in any distribu on, but they can indicate novel behaviour or 
structures in the data set, measurement error, or that the popula on has a heavy- tailed distribu on. 
[9] They may also represent legi mate extreme cases of the target popula on. [29] While in the case 
of heavy- tailed distribu ons, the data indicate that the distribu on has a high skewness and that one 
should be very cau ous in using tools or intui ons that assume a normal distribu on. A frequent cause 
of outliers is a mixture of two distribu ons, which may be two dis nct sub- popula ons, [6] nonnormal 
distribu ons and unequal variances. [6, 9] It has to be noted, that it cannot be sta s cally shown that 
an outlier originates from a different distribu on than the rest of the data. [30] Such an extreme value 
can be generated due to incidental systema c error but also a flaw in the theory. [6] The reasoning 
being, a sta s cal outlier is unlikely to arise by chance. Similarly, an outlying observa on in a process 
control environment is an important signal of a process problem; if all the outlying values were 
rejected, process control would be rendered ineffec ve. [13]  

Note: Extreme cases that are legi mate outliers can have a strong impact and therefore need 
to be diagnosed and addressed. [33] Outlier detec on is a principal step in sta s cal 
applica ons. [35]  

Types of Outliers  

An important aspect of an outlier detec on technique is the nature of the expected outlier. Outliers 
can be classified into the following three categories [23, 24]:  

- point outliers [23] or global outliers [24] 

- contextual outliers [23] or condi onal outliers [24] 

- collec ve outliers [23] 

Point Outliers  

A data point is considered a global outlier if its value is far outside the en rety of the data set in which 
it is found. [24] This is the simplest type of outlier and is the focus of the majority of research on outlier 
detec on. [23] 
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Contextual Outliers  

A data point is considered a contextual outlier if its value significantly deviates from the rest of the 
data points in the same context. This means that the same value may not be considered to be an 
outlier if it occurred in a different context. [24]  

Collec ve Outliers  

A subset of data points within a data set is considered abnormal if those values as a collec on deviate 
significantly from the en re data set, but the values of the individual data points are not themselves 
anomalous in either a contextual or global sense. [24]  

Applica ons of Methods for the Detec ng of Outliers 

Although only a basic understanding of the various methods of outlier detec on should be conveyed, 
the subsequent exemplary men oned applica ons should show the far- reaching importance.  

- Mobile Phone Fraud Detec on.  

In this ac vity monitoring problem, the calling behaviour of each account is scanned to issue an alarm 
when an account appears to have been misused. [23] 

- Insider Trading Detec on  

Insider trading is a phenomenon found in stock markets, where people make illegal profits by ac ng 
on, or leaking, inside informa on before the informa on is made public. It could be knowledge about 
a pending merger or acquisi on, a terrorist a ack affec ng a par cular industry, a pending legisla on 
affec ng a par cular industry. Fraud has to be detected in an online manner and as early as possible, 
to prevent people or organiza ons from making illegal profits or criminal ac vi es. [23] 

- Medical and Public Health Detec on  

The data typically consists of pa ent records which may have several different types of features such 
as pa ent age, blood group, weight. The data might also have temporal as well as spa al aspect to it. 
The data can have outliers due to several reasons such as abnormal pa ent condi on, instrumenta on 
errors or recording errors. [23] 

- Industrial Damage Detec on  

Industrial units suffer damage due to con nuous usage and the normal wear, corrosion etc. Such 
damages need to be detected early to prevent further escala on and losses. The data in this domain is 
usually sensor data recorded using different sensors and collected for analysis. [23] 

- Sensor Networks  

Sensor networks have lately become an important topic of research from data analysis perspec ve, 
since the data collected from various wireless sensors has several unique characteris cs. Outliers in 
such data collected can either imply one or more faulty sensors, or the sensors are detec ng events 
that are interes ng for analysts. [23] 

Effects and Causes of Outliers 

Outliers can be very informa ve about the subject area and data collec on process. It is essen al to 
understand how outliers occur and whether they might happen again as a normal part of the process 
or study area. It is important to resist the tempta on to remove outliers inappropriately. Outlying 
values generally have an appreciable influence on calculated mean values and even more influence on 
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calculated standard devia ons, because of its possible infla on. [13, 35] Outliers increase the variability 
of the data, which decreases sta s cal power and may adversely lead to model misspecifica on and 
biased es mates etc. [13, 9, 35] Consequently, excluding outliers can cause results to become 
sta s cally significant. [13 ,9] Outliers lead to both Type I and Type II errors, frequently with no clue as 
to which effect, they have in a par cular analysis. And they can lead to results that do not generalize 
except to another sample with the same kind of outlier. [31] Deciding how to handle these values 
depends on inves ga ng their underlying cause. The appropriate efforts depend on what causes the 
outliers. In broad strokes, there are five main causes for outlier data entry or measurement errors, 
sampling problems, unusual condi ons and natural varia on. [13, 9]  

Data Entry and Measurement Errors 

Errors can occur during measurement [30, 6] e.g., instrument error, physical apparatus for taking 
measurements may have suffered a transient malfunc on. [6] The measurement systems should be 
shown to be capable for the process they measure. Outliers also come from incorrect specifica ons 
that are based on the wrong distribu onal assump ons at the me the specifica ons are generated. 
[30, 32] Missing- value codes in computer syntax so that missing- value indicators are read as real data. 
[32] During data entry, generally human errors can produce weird values. Unfortunately, a common 
cause of outliers - par cularly very extreme values - are human errors or other aberra on in the 
analy cal process. [13, 29, 32] Outliers can also arise deliberately due to fraudulent behaviour. [6] It is 
essen al to have an access to the original record to correct the input or even remeasure the subject to 
determine the correct value. These types of errors are easy cases to understand. If that value is not 
possible it is necessary to delete the data point because it is proven. [13]  

Sampling Problems and unusual Condi ons 

Unfortunately, the study might accidentally obtain a subject that is not from the target popula on. A 
sample may have been contaminated with elements from outside the popula on being examined. [6] 
The subject was measured under abnormal condi ons. Consequently, the data was excluded from the 
analyses because it was not a member of the assumed popula on. If the analyst can establish that a 
subject does not represent the popula on, the analysing person can remove that data. However, the 
analysing person must be able to a ribute a specific cause or reason for why that sample item does 
not fit the target popula on. [13]  

Natural Varia on 

Natural varia on respec vely and natural devia on in popula on [6] can produce outliers and it is not 
necessarily a problem. However, random chance might include extreme values in smaller data sets. 
Hence, the process or popula on which are studied might produce weird values naturally. There is 
nothing wrong with these data points. They are unusual, but they are a normal part of the data 
distribu on. Therefore, there is no jus fiable reason to remove that value. While it is an oddball, it 
accurately reflects the poten al surprises and uncertainty inherent in a system. When the analyst 
removes them, the model makes the process seem more predictable than it actually is. Even though 
this unusual observa on is influen al, it is best to le  it in the model. It is bad prac ce to remove data 
points simply to produce a be er fi ng model or sta s cally significant results. If the extreme value is 
a legi mate observa on that is a natural part of the popula on the analyst is studying, the analysing 
person should be leave it in the data set. [13]  

Advices for the Removing Outliers 

Some mes it is the best to keep outliers in the data set. They can represent valuable informa on as a 
part of the study area. [13, 30] O en, values that seem to be outliers are the right or le  tail of a skewed 
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distribu on. [30] Retaining these points can be hard, par cularly when it reduces sta s cal 
significance. Excluding extreme values solely due to their extremity can distort the results by removing 
informa on about the variability inherent in the study area. The rejec on of an extreme value on 
sta s cal grounds alone is not generally recommend. [13, 30] The non- considera on of extreme values 
caused the subject area to appear less variable than it is in reality. When considering whether to 
remove an outlier, the analyst needs to evaluate if it appropriately reflects the target popula on, 
subject- area, research ques on, and research methodology. It has to be clarified whether anything 
unusual happen while measuring these observa ons, such as e.g., power failures, abnormal 
experimental condi ons, or anything else out of the norm. [13] If no root cause can be determined, 
and a retest can be jus fied, the poten al outlier should be recorded for future evalua on as more 
data become available.  

If an outlier is in ques on: 

- In the case of a measurement error or data entry error, the correc on of the value has to be 
done if possible. If it is not possible to fix it, that observa on has to be removed. 

- If the value is not a part of the presupposed popula on, then it is legi mate to remove the 
outlier. [13, 29] (Note: It cannot be sta s cally shown that an outlier originates from a different 
distribu on than the rest of the data.[30]) 

- In the case of a value that is a natural part of the presupposed popula on under study, the 
value should not be eliminated. [13] 

- Tabachnick and Fidell postulate two scenarios in which variable dele on is appropriate: (a) the 
variable is highly correlated with other variables or (b) the variable is not essen al for the 
analysis. [29] 

When it is decided to remove outliers, it is needed to document the excluded data points and explain 
the reasoning.[13] (Whereupon from some authors, removing will be seen as the most conserva ve 
and probably the safest approach to outlier management. [29]) It is inevitable for the analyst to 
a ribute a specific cause or causes for removing outliers. [13] Another approach is to perform the 
analysis with and without these observa ons and discuss the differences. [13, 30] Comparing the 
results in this manner is par cularly useful when the analyst is unsure about removing an outlier and 
when there is substan al disagreement over this ques on. [13] If outliers do not change the results of 
the analysis, they can be retained. [29]  

General Strategies for the Detec ng of Outliers 

As men oned, there are two general strategies for detec ng of outliers. The first are the applica ons 
of informal approaches, the visualising sta s cal methods. The second strategy the formal approaches, 
which are outlier tests. These tests are intended to iden fy outliers and dis nguish them from chance 
varia on, allowing the analyst to inspect suspect data and if necessary correct or remove erroneous 
values. [9, 34] The analyst has to decide whether the cases that are outliers are properly part of the 
popula on from which you intended to sample. Cases with extreme scores, which are, nonetheless, 
apparently connected to the rest of the cases, are more likely to be a legi mate part of the sample. 
[32] The both strategies can also be applied in the case of applica on of robust sta s c tests. [9] Robust 
sta s cal procedures which are not greatly affected by the presence of occasional extreme values, but 
which s ll perform well when no outliers are present. [13]  

Note: There is no rigid mathema cal defini on of what cons tutes an outlier [6, 9]; 
determining whether an observa on is an outlier is ul mately a subjec ve. [6]  

Finding outliers depends on subject- area knowledge and an insight of the data collec on process. 
While there is no solid mathema cal defini on, there are guidelines, graphs viz. methods of descrip ve 
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sta s cs and sta s cal tests which can be used to find outlier. There are a variety of ways to find 
outliers, [9] whereat some of which are treated as synonymous with novelty detec on.[6] All of these 
methods employ different strategies for finding values that are unusual compared to the rest of the 
data set.  

Methodologies to detect Outliers 

Sor ng Data Sets 

Sor ng a data set to generate ranking lists for each variable is a simple but effec ve way to highlight 
unusual values. This methodology is useful, par cularly when the number of data points is not too 
large. This approach does not quan fy the degree of abnormality of an outlier, on the other hand it will 
enable the analysing person to see the unusually high or low value at a glance. [13, 29] The ranking list 
can be supplemented by domain specific thresholds to select the most relevant suspicious value. [23]   

Graphing Data Sets 

Humans simply are incapable of processing informa on about lengthy numerical arrays. Graphs 
provide an effec ve means of downplaying the details of the data and emphasizing the important 
features, the distribu onal shape, loca on, presence of unusual observa ons, like outliers etc. 
Graphical methods greatly simplify the assessment of analy cal data. The use of visualising sta s cal 
methods facilitates the detec on of outliers, because these values are characterised by a visible 
distance from the remainder of the data. [13] While illustra ve measures such as dot plots, histograms, 
boxplots etc. provide visual indica ons of the presence of possible outliers, it is recommended that 
researchers corroborate these approaches with objec ve quan fiable measures to ensure accurate 
outlier iden fica on. [29] On the other hand, graphs can be somewhat detrimental in some situa ons 
because it o en is difficult to recover the numeric values from the visual display. In contrast, graphs 
usually are superior for revealing pa erns, trends, and rela ve quan es within data sets regardless of 
their size. All numerical summaries of data are based on assump ons about the nature of those data. 
If these assump ons are met, then descrip ve sta s cs provide an accurate representa on of the data 
features. But in the extent the assump ons are not met, descrip ve sta s cs can be inaccurate and 
misleading. Graphical presenta ons are not nearly as reliant on such underlying assump ons and so 
they can be used to summarize the data without the a endant dangers of misrepresenta on. Another 
advantage is that graphical analysis facilitates greater interac on between the analyst and the data. 
Effec ve visual presenta ons highlight interes ng and unusual aspects of the quan ta ve informa on 
under inves ga on. This encourages the researcher to pursue these features to iden fy their sources 
and implica ons for understanding the processes that are genera ng the data. [31]  

Histograms 

The histogram [29] which is also known as frequency distribu on, [34] or frequency histogram [32] is 
by far the most commonly used procedure for displaying data. A histogram is a graphical display that is 
used to demonstrate central tendency distribu ons, the rela ve concentra on or "density" of 
observa ons. The morphology of histograms typically mimics a normal distribu on with a cluster of 
cases near the mean and a trail of cases heading toward both ends of the distribu on. [29, 32, 34] 
Many naturally occurring things have this shape of distribu on. [34] The data density at any specific 
loca on within the whole range is represented by the ver cal height of a point. A histogram is usually 
presented as a ver cal bar chart showing the number of observa ons in each of a series of intervals. 
The horizontal axis is divided into segments corresponding to the intervals. Whereat intervals are o en 
called "bins”. On each segment a rectangle is constructed whose area is propor onal to the frequency 
in the group. The areas under the histogram can be interpreted as probabili es such as the area 
covered by each "bar". The histogram provides a great deal of informa on about the distribu on in a 
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very concise manner. Histograms are all somewhat sensi ve to the choice of intervals. Even rela vely 
small changes in start point or interval width can no ceably change the appearance of the plot, 
especially for smaller data sets. [13] The problems stem from the arbitrary nature of the “bins” used to 
categorize the con nuous data values. If the y- value is small, rela ve to the range of the data, in 
combina on with narrow bins, then the histogram will follow the contours of the distribu on closely.  
The empirical representa on of the distribu on could be quite "bumpy." Alterna vely, wider bins in 
combina on with larger y- values produce a smoother histogram. But they also increase the risk of 
distor ng substan vely important features -like outliers- in the distribu on of the variable. The 
problem is that wide “bins” eliminate any possibility of showing local varia ons in the densi es 
contained within the respec ve bins. [9, 29] Most frequently histograms display no more than about 
20 bars. [33] The very use of the “bins” is a distor on of informa on because any data variability within 
the “bins” cannot be displayed in the histogram. At the same me, the discrete nature of the “bins” 
generates discon nui es that are manifested visually in the sharp corners of the histogram bars; the 
la er certainly, are not an intrinsic part of the data. Histograms also emphasize the existence of outliers. 
[9, 29] The basic idea is to visualise the data distribu on for a single variable and find values that fall 
outside the distribu on. [9, 29] It is recommended that histograms be u lized only as a preliminary 
assessment in the search for outliers. This is because, except in extreme outlier cases, the use of 
histograms may not be defini ve. [29]  

 

Figure 1 shows a histogram with the thiamphenicol data from [13] 

Unidimensional Sca erplots 

The chart below using unidimensional sca erplots (Figure 2) for each of four variables. Unidimensional 
sca erplots show clearly that the variable distribu ons differ from each other in important and easily 
recognizable ways. For anyone confronted with the informa on in this graphical form, there is no 
ques on that the variables have divergent distribu ons. Instead, a en on would centre on the more 
interes ng ques on of why the four sets of values show such differences from each other. This brief 
example illustrates very nicely the general advantages of graphical approaches to data analysis. The 
graphs provide useful summaries for large, complicated data sets.  
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Figure 2 shows an even a cursory glance at the Figure reveals that X1 has a unimodal, 
symmetric distribu on, whereas the distribu on for X2 is symmetric but bimodal. At the same 

me, X3 distribu on is skewed posi ve, whereas X4 distribu on is compressed to the le , but 
offset by a single outlying observa on (Outlier) with an extremely large value. The sample 
arithme c mean and standard devia on are accurate summaries of the distribu on for X1, but 
they seriously misrepresent the other four variables.   

A unidimensional sca erplot simply shows each observa on as a point plo ed along a scale line that 
represents the range of data values. This type of graph can convey a great deal of informa on without 
the poten al loss of informa on or distor on encountered in a histogram. The main drawback of a 
unidimensional sca erplot is that it is effec vely limited to small data sets. With large numbers of 
observa ons, there is a drawback of overplo ng. This makes it difficult to discern individual 
observa ons and concentra ons of data points within the overall distribu on. There are two general 
and mutually suppor ve strategies for minimizing the effects of overplo ng. First, it is important to 
select a plo ng symbol that allows readers to detect overplo ed points. The rela vely large open 
circles are effec ve for this purpose. Small and or solid points would coalesce into incomprehensible 
blobs within the display. Similarly, if the plo ng symbols had straight sides (e.g. squares), then it would 
be more difficult to separate them visually into individual data points when they overlap within the 
display. The overplo ng can be reduced by displacing the points somewhat in the direc on 
perpendicular to the scale line of the variable. This Process is called “ji ering”. In a “ji ered” 
unidimensional sca erplot, it is important to keep the range of the random varia on small rela ve to 
the varia on in the substan ve variable.  [13] 

Dot Plots 

A dot plot (Figure 3) which also called index plot is a useful display method whenever data values are 
associated with iden fying informa on such as a label or an index number. Dot plots are useful in a 
variety of situa ons and there are several different versions of the basic display. One axis of the dot 
plot, usually the horizontal, represents the scale for the variable under inves ga on. The other axis, 
usually the ver cal, contains rows that provide a label or an index for each data value. Observa ons 
are sorted according to the values of the variable under inves ga on and then plo ed as points at the 
appropriate scale loca on within each row. In this manner, the dot plot iden fies both the specific data 
points and the numeric values that are associated with them. The dot plot is effec vely the same as a 
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transposed quan le plot or Q-Q- Plot and the shape of the point array can be interpreted in a manner 
similar to those displays. [13]     

 

Figure 3 shows a bimodal distribu on (corresponding to the nearly ver cal sec ons in the point 
array) and the asymmetric tails (in the long and fairly steep point array in the lower le  side of 
the graph and the shorter, shallower string of points near the upper right- hand corner). The 
dot plot succinctly provides a great deal of informa on about the distribu on and the specific 
observa ons within the data like outlier. In the case of a unimodal distribu on the graph would 
show a plot shaped like a "transposed S." with a more “linear part” in the middle. Note: The 
modality of a distribu on concerns how many peaks. A distribu on with a single peak - that is, 
one value with a high frequency - is a unimodal distribu on. Mul modal distribu ons have two 
or more peaks and when there are exactly two peaks, the distribu on is bimodal. [33]  

The dot plot is a graphical processing task that human observers can carry out quite accurately. By 
contrast, pie charts require analysts to make comparisons between the angles, arcs and areas that 
define the sizes of the pie wedges. Like dot plots, bar charts also require judgments about loca ons 
along the scale. In summary, dot plots are excellent graphical displays for labelled data. They contain a 
great deal of informa on, concerning distribu on, outliers, are easy to interpret and overcome a 
number of the problems associated with other kinds of displays. For these reasons, they should be 
used frequently in empirical research. [31]  

Background of the Parametric Sta s cal Methods 

Visual inspec on alone cannot always iden fy an outlier and can lead to mislabelling an observa on 
as an outlier. Because data are used in es ma on with classical measures (parametric sta s c) such as 
the arithme c mean being highly sensi ve to outliers, sta s cal methods were developed to 
accommodate outliers and to reduce their impact on the analysis. [30] Parametric sta s cal tests - like 
the later on described outlier test - assume an underlying normal distribu on specified by the 
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arithme c mean and the standard devia on and where this assump on is violated, the results of such 
tests will be unreliable due to a loss of sta s cal power. It is therefore necessary to test if such an 
assump on is valid before proceeding to analyse the data.  

- The normal probability plot is a graphical method on the basis of a non- parametric sta s c 
approach for assessing whether or not a data set is approximately normally distributed. 

- The probability plot correla on coefficient (PPCC) is a test sta s c of the linearity of the 
rela onship between two variables for assessing whether or not a data set is approximately 
normally distributed. [18] 

Against the background of the importance of the parametric sta s cal methods, like the applica on of 
the Zscore and parametric tests, the fundamental central limit theorem has to be de described briefly.  

Central Limit Theorem 

In the case of an infinite large size of numbers of samples, the normal distribu on respec vely the 
Gauss- distribu on represents the central limit theorem [42, 1, 43] developed by Pierre-Simon 
(Marquis de) Laplace (1778) (1749 -1827) [44] The law of large numbers is a natural law [45] and 
fundamental for the induc ve sta s cs. [43] The law of large numbers represents formally the 
convergence of the means. [46] It is necessary to underscore that probability density func ons in 
general are mathema cal models which embodies a set of sta s cal assump ons concerning the 
genera on of sample data and similar data from a larger popula on, consequen al density func ons 
are approxima on func ons to describe the reality.  Also, valid here is the principle: A mathema cal 
model is only as strong as its underlying assump ons. [1, 47, 43, 45, 48] The use of the central limit 
theorem makes it possible to describe the arithme c mean, the standard devia on the confidence 
interval of the theore cal distribu on and resul ng from this the probability of the existence of 
outliers. 

Con nuous Probability Density Func on 

The law of large numbers says, if it is taken more samples from any popula on (formular 1), then the 
mean of the sampling distribu on (formular 2), tends to get  

μ =
1

N
x  

Formular 1 

x =
1

n
x  

Formular 2 
closer to the true population mean, the population standard deviation (s) (Formular 3) (Whereby  
represents also the inflexion point of the function of Gauss- distribution on the x- axis [42, 49]) and 
sample standard deviation () (Formular 4), consequently closer to reality. [4] 

𝜎 =
∑(x − μ)

N
 

Formular 3 

s =
∑(x − x)

n − 1
 

Formular 4 
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Both results of formular 3 () and formular 4 (s) represent the variability of the random variable (x) 

around the expected value (µ, x). [49] 
 
Confidence Interval and Probability of Outliers 
 
The determination of the confidence interval is based on the arithmetic mean �̅� of the sample to 
estimate the arithmetic mean of population (µ) and the standard variation (s) to estimate the 
population standard deviation (). The influence of the sample size and the knowledge of the 
distribution are also essential in these analyses. [43] The confidence interval is an interval estimation. 
[42, 1, 50, 47, 43, 49] The confidence interval contains the most plausible values of the unknown 
parameter of interest. [47] This interval estimate for the unknown population parameters depends on: 
the desired confidence level, information that is known about the distribution, the sample and its size.  
Concerning to the approximate standard normal distribution with a known population standard 
deviation () it is mostly common to define a confidence interval of 95% of the samples which will be 
within a confidence coefficient of Zα = 1.960 which represents a standard deviation 1,96  of the 
population mean μ.   
This confidence interval implies two possibilities: Either the interval contains 95% of the true mean μ 
and samples produced an �̅� that is within the interval of the true mean μ. The second possibility 
happens for 5% (error) of the samples, because they are outside of the interval. Concerning the 
labelling of outliers, the error represents the existence of outliers. In the context of outlier detection, 
the error will be labelled out. The relationship between the total probability, the confidence interval 
(CI) and the probability of the existence of outliers (out) can be written as follows (one – side interval 
estimation):   

1 = CI + α  
Formular 5 

In the case of a two - side interval estimation as follows: 

1 = CI +
α

2
+

α

2
 

Formular 6 

The confidence coefficient Zα is the number of standard deviations where the outlier lies from the 
mean with a certain probability. The most convention in economics, technical- and also most social 
sciences sets confidence levels at either 90 % (Zαout=  1.645, out= 10%), 95% (Zαout=  1.960, out= 
5%) certainty is considered as probable respectively significant [47], 99% (Zαout=  2.576, out= 1%) 
security is considered as significant respectively “very significant” [47] and 99.9 % (Zαout=  3.290, out= 
0.1 %) security is considered as “highly significant.” [42, 1, 50, 47, 43, 49] Like the level of confidence 
the probability of the existence of outliers must be pre- set and not subject to revision as a result of 
the calculations. [51, 1] The difference concerning the probability of the existence of outliers and the 
most often applied significance level  or error = 0.5 is that out ≤ 0.5 and that the value is mainly given 
by the confidence coefficient (Zαout) and not in percent. Next to confidence coefficient Zα, for the 
labelling of outliers, some authors named also a value of a threshold of Zαout respec vely of =  2.576 
(Zαout=  2.576, out= 1%). [34] A standard cut- off value for finding outliers is a Zαout of 3, respec vely 
 3, the three- sigma rule (Zαout=  3.000, out= 0.27 %). This rule denotes that roughly 1 in 370 
observa ons will differ by three mes the standard devia on. [10, 33, 6] Similar to the value which 
represents the term “very significant”, the value of =  3.290 (Zαout=  3.290, out= 0.1 %) can be 
found in the literature to iden fy outliers. [29, 32, 34] The author argued that: “The extremeness of a 
standardized score depends on the size of the sample; with a very large number of data (n), a few 
standardized scores in excess of 3.29 are expected.” [32]. 
 
     𝑍 =  1.96 = 𝛼 = 5.00% [13, 40] 
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Formular 7 

𝑍 =  2.58 = 𝛼 = 1.00% [13, 34, 40] 
 

Formular 8 
𝑍 =  3.00 = 𝛼 = 0.27%  [6, 10,33] 
 

Formular 9 
𝑍 =  3.29 = 𝛼 = 0.10%  [29, 32, 34] 
 

Formular 10 
In order to check whether data points are outliers, they have to be converted to Zscore, which will also 
called “Studen za on”. Zscore -analysis is an important and objec ve way to determine whether a 
suspected outlier is truly a concern. [29] If the popula on is assumed to be normal, the 
“Studen za on” respec vely conversion can be applied. [11] The Zscore can quan fy the unusualness 
of an observa on. Zscore and Zαout are the number of standard devia ons () above and below the 
arithme c mean �̅� that each value falls. [10] To calculate the Zscore for an observa on, it is necessary to 
take the raw measurement (x), subtract each by the arithme c mean (�̅�) and divided by the standard 
devia on (S).  

Z =
x − x

S
 

Formular 11 

If the absolute value Zscore of a data is greater than the absolute value of the chosen cut- off value Zαout 

the suspicious data can be labelled as a poten al outlier.    

The Zscores can mislead with small data sets (n) because the maximum Zscore is limited. The herea er 
quoted equa on describes the maximal achievable Zscore as func on of the number of samples 

Z ( .) =
( )

√
        

[12]   Formular 12 

Unfortunately, the value of Zscore(max.) is quite limited for small data sets (n). When n ≤ 10 the Zscore(max.) 

cannot exceed  =  3 (Zαout = 3) regardless of the combina on of values. Consequently, no value can 
be detected as an outlier according to the three- sigma rule. [12] Therefore it is possible to name the 
minimum number of data n >10 to apply the three- sigma rule for the labelling of outliers. The presence 
of the outlier influences the Zscore because it inflates the arithme c mean �̅� and standard devia on S. 
When the Zscores will be calculated without the outlier, the values would be different. If a data set 
contains outliers, Zscores will be biased therefore they appear to be less extreme (i.e., closer to zero). It 
is not appropriate to consider a Zscore as being approximately normally distributed in any cases. The 
Zscore is not sa sfactory for outlier labelling, especially in small data sets. Although the basic idea of 
using the Zscore is a helpful approxima on, they are unsa sfactory because the summaries x and  are 
not resistant in respect of outliers. [21] However, if the data do not follow the normal distribu on, this 
approach might not be accurate. In general, it is assumed that the number of data exceed 30. Incipient 
with a number greater than 30 is can be assumed that the data are approximately normally distributed 
and the Zscore is a sa sfactory es ma on for outlier labelling. [22, 34] When the number of samples get 
fewer than 30, the sampling distribu on has a different shape and can be considered suitable e.g. the 
t- distribu on.  
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Note: Concerning the se ng of limit values like the threshold of  (Zαout) and the significance 
in general, it is worth remembering the words of Sir Ronald Aylmer Fisher: 

Fisher acknowledged that the dogma c use of a fixed level of significance was silly: 'no 
scien fic worker has a fixed level of significance at which from year to year, and in all 
circumstances, he rejects hypotheses; he rather gives his mind to each par cular case in the 
light of his evidence and his ideas' (Fisher, 1956). [34] 

In other cases, robust methods should be used like the es mator MAD (the median of the absolute 
devia ons about the median) etc. [21, 13]    

Modified Zscore 

This method uses two es mators for outlier labelling, the median �̃� and median absolute devia on 
MAD instead of arithme c mean �̅� and the classical standard devia on S to resolve the limita on of 
Zscore in which standard devia on S can be affected by extreme observa on. [35] 

MAD = median |xi −  x̃ |i = 1,2, … , n 

Formular 13 

Whereat �̃� is the sample median and MAD being the sample median absolute devia on. The median 
absolute devia on (MAD) is not directly comparable to the classical standard devia on (S). Under the 
condi on that the underlying distribu on is approximately normal, the MAD can be modified to 
provide approximated standard devia on S. 

MAD ≈
.

≈
.

  

Formular 14 

The approximated standard devia on S on the basis of the MAD is called MADE 

MADE = 1.483 MAD  

[13, 21]  Formular 15 

The modified Zscore is denoted by 𝑀𝑖 and is calculated as follows  

Mi =
|xi −  x̃ |i = 1,2, … , n 

MAD
 

Formular 16 

Iglewicz and Hoaglin proposed that the absolute values of Mi greater than 3.5 i.e. |Mi| > 3.5, the 
observa on is considered as an outlier. [21, 35] 

Notes:  

1. The MAD and MADE share the disadvantage that they both become zero if more than half of 
the data set are equal, perhaps because of excessive rounding or a large number of zero 
observa ons. This would, of course, be a problema c data set in any case. 

2. Because of the limita ons of MADE, it is some mes useful to use the arithme c mean 
absolute devia on instead of the median absolute devia on. Although this is less robust than 
MADE, it does not become zero unless all the values in the data set are iden cal. sMAD is a 
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compromise; if MADE is non-zero, sMAD = MADE; if MADE is zero, sMAD is the arithme c mean 
absolute devia on. [13] 

On the basis that MADE approximately represents the standard devia on of the Gaussian- distribu on 
 a threshold of |Mi| > 3.5 represents the probability of the existence of one outlier of 0,00012 (0,012 
%) for each side and 0,00022 (0,022 %) of both sides of the Gaussian- distribu on. 

Median Absolute Devia on (MADE) Method 

The method MADE is a robust technique that uses median 𝑥 and median absolute devia on MAD 
instead of arithme c mean �̅� and standard devia on S, as they are highly unaffected by extreme 
observa ons. This technique is defined as follows: 

2MADE Method: 𝑥  2MADE    

Formular 17 

3MADE Method: 𝑥  3MADE              

Formular 18 

The values that lie outside the interval of 𝑥  2MADE or 𝑥  3MADE are considered as outliers. [35]  

Q-Q- Plots  

A special example of a sca er plot, [13] dot- plot or index- plot [31], is a normal probability plot [13, 
32], some mes also called a quan le- quan le plot “Q- Q- Plot” [13] or “normal – plot”. Whereat the 
Q-Q- plot represents the most common variant. [16] The use includes the iden fica on of skewness, 
kurtosis, [6, 15, 20] a need for transforma ons and also the detec on of outliers. [6, 15, 32, 34]  

Note: Quar les divide a distribu on into fourths, percen les divide a distribu on into one 
hundredth and deciles divide it into tenths. [33] The quan les of a distribu on are a set of 
summary sta s cs that locate rela ve posi ons within the complete ordered array of data 
values. [31, 32]  

A point on the plot corresponds to one of the quan les of a distribu on plo ed against the same 
quan les of the reference distribu on, with which the first will be compared. [14, 31]  

Q-Q- plot is formed by: 

    y- axis: zi- scores of the observa on 

    x- axis: zi- score of the inverse cumula ve func on (-1) of the reference distribu on [16] 

This defines a parametric curve where the parameter is the index of the quan le interval. To produce 
a probability plot, the order sta s cs of the observed values or the transformed order sta s cs has to 
be generated. [18] This calcula on of the quan les (pi) of the observa ons has to be plo ed based on 
the ranks. [14, 32] One way of forming approximate normal scores for n data points x1…xn, of the 
uniform order sta s c medians pi [16], is as follows [13]: 

1. Obtain the ranks ri for the data set. [13] 
 

2. The normal probabili es pi, for each data point respec vely rank. [13] Different sources quote 
diverse formulars for the approxima on, calcula on of the quan les [16]. The formula used by the 
basic "stats" package in R for that con nuity correc on [20] is as follows:  
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𝑝 =
(𝑟 − a)

(n − 1 + 2a)
 

Formular 19 

where ri is the rank of the data, a is set to 0,375 and n the number of values. If the number of value 
n is less than or equal to 10 then a is set to be 0,5 otherwise. [13, 15] Others sources recommend 
the following equa on, developed by Blom (1958): 

𝑝 =
(𝑟 − 0,375)

(𝑛 + 0,25)
 

[14,18,19]   Formular 20 

Most references quote the following formular: 

𝑝 =
(𝑟 − 0,5)

𝑛
 

          Formular 21 

The last of these ranks ri, in this equa on, corresponds to the 100th percen le which represents the 
maximum value of the theore cal distribu on, which is some mes infinite. [14, 20] In this equa on, 
the quan ty 0.5 is subtracted from each ri value in the numerator to avoid extreme quan les of 
exactly 0 or 1. The la er would cause problems if empirical quan les were to be compared against 
quan les derived from a theore cal, such as the normal.  This adjustment has no effect on the shape 
of any graphical displays that use the quan les. [31] 

3. The uniform order sta s c medians pi and the percent point func on [16], which is also called the 
inverse of the cumula ve distribu on func on (-1) and “Probit” [17], is needed to generate the x- 
values of the Q-Q- plot. The -1 – func on generates the probability, based on the calcula on of the 
uniform order sta s c medians, the pi - values. [16] -1 gives the Zi-score associated with probability 
pi values between 0 ≤ pi ≤ 1 onto a standard normal distribu on. [17] If one or both of the axis in a 
Q- Q- plot is based on a theore cal distribu on with a con nuous cumula ve distribu on func on 
(CDF), all quan les are uniquely defined and the Zi- score of the normal distribu on can be obtained 
by 1. [14]    

z = Φ , f(p ) 

Formular 22 

Whereat 1 is for the Gaussian- distribu on as func on of the probabili es pi. [14] The Q-Q- plot 
based on the presenta on of the Zi-scores grounded on  -1 as x- values and the Zi-scores of the 
measurement as y- values. 

The diagram below shows the different Zi-scores for -1, for the Gaussian- distribu on and the Zi-scores of 
the measurement calculated based on the procedure of “Studen za on” of measurements [11]. Both 
scores a pictured as func on of the probabili es pi based on the quan les.  
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Figure 4 displays a Q-Q- Plot, whereby the orange dots represent the inverted cumula ve 
distribu on func on (-1) for the Gaussian- distribu on and the blue dots represent the Zi-scores 

of exemplary measurements, as func on of the probability pi based on the quan les. Whereat 
the y- axis represents the Zi-scores of the measurement and the Zi-scores of the inverted 
cumula ve distribu on func on (-1) for the Gaussian- distribu on.  

 

Figure 5 shows the plo ng Zscore against xi- values gives the Q-Q- plot. [13] Whereat the values 
of the x- axis in contrast to first graph are not standardised. 

The points plo ed in a Q- Q- plot are always increasing when viewed from le  to right. [20, 32] If the 
two distribu ons being compared are iden cal, the Q–Q plot follows the 45°- line (y = x) the angle 
bisector [20]. If the two distribu ons agree a er linearly transforming the values in one of the 
distribu ons, then the Q- Q- plot follows some line, but not necessarily the line y = x. If the general 
trend of the Q- Q- plot is fla er than the line y = x, the distribu on plo ed on the horizontal axis is 
more dispersed than the distribu on plo ed on the ver cal axis. Conversely, if the general trend of the 
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Q- Q- plot is steeper than the line y = x, the distribu on plo ed on the ver cal axis is more dispersed 
than the distribu on plo ed on the horizontal axis. Q- Q- plots are o en arced, or "S" shaped, indica ng 
that one of the distribu ons is more skewed than the other, or that one of the distribu ons has heavier 
tails than the other. [14] Devia ons from the line (usually at either end) indicate some devia on from 
normality. If the data points fall on or close to a straight line, the data are close to be normally 
distributed. This guide line is shown as the dashed line in Figure 5. ln this case, most of the points fall 
fairly close to the line; only the slight curvature in the data suggests any non- normality. [13] If normality 
is present, the residuals are normally and independently distributed around the 45° - line (y=x). [32]  

Box- Plot and Interquar le Range 

A Q-Q- plot shows all of the data. Some mes, however, this degree of detail is not necessary in a 
graphical display. [31] A Box- Plot - o en also called a 'box- and- whisker' plot or "box- and- whisker 
diagram" - is a useful method of summarising data sets, par cularly where the data fall into different 
categorical grouping variable and con nuous variable. [13, 28] Box- Plots are based on the quan les of 
a distribu on. Analysts frequently use them during data analysis because the displayed data set shows 
the "most important" quan les respec vely the characterising data. The Box- Plot represents, the 
central tendency, [31] dispersion, skewness, and spread, around the median 𝑥 as well as highligh ng 
outliers. The interquar le range (IQR) - the hight of the box - is a measure of the spread and dispersion 
of the data. [28, 29, 30, 31, 32, 33, 34] The symmetry of the distribu on is indicated by the rela ve 
distances from the median line to the upper and lower edges of the box and also by the rela ve sizes 
of the two whiskers. The box shows the central region of the distribu on. [31] The used quar les and 
interquar le range (IQR) have the advantages to be also rela vely robust compared to other 
quan ta ve methods concerning the detec ng of outliers. [9, 31] The Box- Plot displays outliers using 
asterisks that fall outside the subsequent described “whiskers”. These graphs are o en precursors to 
hypothesis tests. [28] The different features can represent different sta s cs, but the most common 
choice is the five- number summary as follows [13, 28]: 

1.  The minimum value of the data set. [26, 28, 31] 

2.  The first or lower quar le (Q1) which represents 25th percen le of the data set. [26,28, 29, 30, 
31, 34]  

3. The central solid line inside of the box is the median 𝑥 [13, 21] which represents 50th percen le 
of the data set. Whereat the median is also called the second quar le. [34] The median is a 
measure of central tendency in sta s cs. [26, 28, 29, 30, 31, 33, 34]. 

4.  The third or upper quar le (Q3) which represents 75th percen le of the data set. [26, 28, 29, 
30, 31] 

5.  The maximum value of the data set. [26, 28, 31] 

These five values highlight the data distribu on shape, spread, and central tendency. All these 
measures are nonparametric and do not make assump ons about the data distribu on. This aspect 
makes a box and whisker plots especially suitable for the early stages of analysis. This graph works by 
breaking the data set down into predefined quar les. When the sample size is too small, the quar le 
es mates might not be meaningful. Consequently, these plots work best when at least 20 data points 
per group are available. [28] The bo om and top of the rectangular “box” show the lower and upper 
quar les, respec vely. The box shows the range of the central 50% of the data set. The length of the 
box is the interquar le range (IQR), the indicator of the dispersion of the data. [13] It represents the 
range of values between the third quar le (75%) and the first quar le (25%) (IQR= Q3 – Q1= Q0.75 – 
Q0.25), that equates 50%. [13, 9, 21, 26, 28, 29, 31, 33] Percen les respec vely quar les indicate the 
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percentage of data that fall below a par cular value and it describes the rela ve standing of a value. 
[28] One formula for finding first quar le (Q1) and third (Q3) is quoted below. Whereat i is the index of 
a data value and can be calculated on the bases of number of date n.  

𝑖 =
(⌊(𝑛 + 1)/2⌋) + 1

2
 

Formular 23 

To get the lower quar le, Q1, with an ascending coun ng of i from the top of the list. The posi on i 
can be calculated as follows [21] 

𝑛 𝑜𝑑𝑑 ∶  
𝑥(⌊ ⌋) + 𝑥(⌊ ⌋)

2
 

Formular 24 

𝑛 𝑒𝑣𝑒𝑛: 𝑥(⌊ ⌋) 

Formular 25 

To get the upper quar le, Q3, with an ascending coun ng of i from the bo om of the list. The posi on 
i can be calculated as follows [21]. 

𝑖 =
(⌊(𝑛 + 1)/2⌋) + 1

2
 

Formular 23 

When data are arranged in ascending order, the median 𝑥 is a number that measures the "center" of 
the data set it represents the 50th percen le and the central solid line inside of the box. For symmetrical 
distribu on, the arithme c mean 𝑥  and median 𝑥 have the same expected value. [13] The median 𝑥 
as the "middle value," but it does not actually have to be one of the observed values. It is a number 
that separates ordered data into halves. If n is an odd number - similar to the calcula on of Q1 and Q3 
- the median is the middle value of the ordered data. If n is an even number, the median is equal to the 
two middle values added together and divided by two a er the data has been ordered. [1,13] 

𝑛 𝑜𝑑𝑑 ∶  𝑥( )/  

Formular 26 

𝑛 𝑒𝑣𝑒𝑛: 
𝑥 / + 𝑥( )/

2
 

           Formular 27 

The lines extending upwards and downwards from each box - the “whiskers”- are drawn from the end 
of the box to the last data point within an adjustment factor k= 1.5, which represents 1.5 mes the 
interquar le range IQR of the box. [13, 31]. In those cases, the whiskers are not extending the minimum 
and maximum values, these data are considered and marked as outlier values [26, 28, 30, 31]. The 
adjustment factor k= 1.5 is used to calculate boundaries for what cons tutes mild outliers and in the 
case of a k= 3.0 for extreme outliers. [25, 26, 21, 29, 31]  

lower inner fence: Q0.25 – 1.5 IQR 

Formular 28 
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upper inner fence: Q0.75 + 1.5 IQR 

Formular 29 

The k= 3.0 rule is quite conserva ve, implying that far out values can be comfortably declared as 
outliers when the data are assumed to come from random normal samples.  

lower outer fence: Q0.25 – 3.0 IQR 

Formular 30 

upper outer fence: Q0.75 + 3.0 IQR  

Formular 31 

Observa ons flagged as outside require further study to determine their causes.[21] The number that 
accompanies an outlier data point is known as the case iden fica on number. [29] The k= 1.5 and k= 
3.0 rule should not be used alone to declare outside observa ons as defec ve. [21] The lines at the 
end of the “whiskers” are o en terminated “fences” with a horizontal line. [13] Each whisker contains 
24.651% of the distribu on. [28] Individual observa ons outside the “fences” are drawn as separate 
points on the plot, these observa ons are outliers. [13, 21]. These fences are "imaginary values" that 
usually do not occur within the empirical data. They are only used to obtain the upper and lower 
"adjacent values". [31] Box plots display asterisks on the graph to indicate when data sets contain 
outliers. [6, 9] For a normal distribu on, observa ons outside the “fences” are expected about 0.7 % 
in the case of k= 1.5, so individual points outside the fences are generally considered to be outliers [13] 
or mild outliers [33]. Mild outliers are shown with circles. [33] Observa ons outside the “fences” are 
expected about 0.002 % in the case of k= 3.0, so individual points outside the fences are generally 
considered to be extreme outliers. [33] Cases that are extreme outliers are shown with asterisks. [33] 
Even when data are not normally distributed, a box- plot can be used because it depends on the median 
and not the arithme c mean of the data. [30] It is important to iden fy unusual and problema c 
aspects of the data. At the very least, the presence of outside values should lead the analyst to inspect 
these observa ons more closely. The only real drawback of a box- plot is that it is fairly insensi ve to 
mul ple modes within the data. But beyond this limita on, the box- plot crams a great deal of 
informa on into a concise and easily understood visual display. Because of this, it probably is the 
second most frequently used graphical method for data, behind only the histogram in popularity [31] 

 

Figure 6 displays a Box plot of thiamphenicol data by day. [13] 
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An advantage of the boxplot, in comparison to the histogram, is that iden fica on of outliers is based 
on sta s cal methods rather than subjec ve ‘‘eyeballing.’’ [29]  

Sta s cal Tests to iden fy Outliers 

In contrast to the previous described informal methods, the formal methods are test- based 
methodologies that usually require a sta s cal test to test a hypothesis. [35] Hypothesis tes ng is a 
sta s cal analysis that uses sample data to assess two mutually exclusive theories about the proper es 
of a popula on. Sta s cians call these theories the null hypothesis and the alterna ve hypothesis. A 
hypothesis test assesses a sample sta s c and factors in an es mate of the sample error to determine 
which hypothesis the data support. [9] This paper deals with tests on the basis of the Gaussian- 
distribu on. Therefore, a formal method to examina on whether the distribu on is normal will be 
described.  

Preliminary Considera ons 

Before describing individual tests, it is useful to consider what ac on should be taken on the basis of 
outlier tests. [9] A posi ve outcome from an outlier test is best considered as a signal to inves gate the 
cause; usually, outliers should not be removed from the data set solely because of the result of a 
sta s cal test. However, experience suggests that human or other error is among the most common 
causes of extreme outliers, as described. This experience has given rise to fairly widely used guidelines 
for ac ng on outlier tests on analy cal data, based on the outlier tes ng and inspec on procedure 
included in ISO 5725 Part 2 for processing interlaboratory data. The main features are:  

1. Test at the 95% and the 99% confidence level. [13, 40] 

2. All outliers should be inves gated and any errors corrected. 

3. Outliers significant at the 99% level may be rejected unless there is a technical reason to retain 
them. 

4. Outliers significant only at the 95 % level should be rejected only if there is an addi onal, 
technical reason to do so. 

5. Successive tes ng and rejec on are permissible, but not to the extent of rejec ng a large 
propor on of the data. 

This procedure leads to results which are not seriously biased by rejec on of chance extreme values, 
but are rela vely insensi ve to outliers at the frequency commonly encountered in measurement 
work. Note, that this objec ve can be a ained without outlier tes ng by using robust sta s cs where 
appropriate. It is important to remember that an outlier is only “outlying” in rela on to some prior 
expecta on. If the data were e.g. Poisson distributed, many valid high values might be incorrectly 
rejected because they appear inconsistent with a normal distribu on. It is also crucial to consider 
whether outlying values might represent genuine features of the popula on. It follows that outlier 
tes ng needs careful considera on where the popula on characteris cs are unknown or, worse, 
known to be nonnormal.  The most important role of outlier tes ng is to provide objec ve criteria for 
taking inves ga ve or correc ve ac on. Outlier tests are also used in some circumstances to provide a 
degree of robustness. [13]  

The Probability Plot Correla on Coefficient Test  

The probability plot correla on coefficient (PPCC) is used as a test sta s c of Gaussian- distribu on. 
This methodology is a test sta s c on the basis of the linearity of the rela onship between two 
variables. The null hypothesis for the PPCC- test is that the data are normally distributed with the PPCC- 
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test sta s c the correla on coefficient r. The PPCC defined as the product moment correla on 
coefficient between ordered observa on xi and the yi. [18, 39] 

𝑃𝑃𝐶𝐶(𝑥, 𝑦) = 𝑟(𝑥, 𝑦) =
∑ (𝑥 − �̅�)

∑ (𝑥 − �̅�) ∑ (𝑦 − 𝑦)
 

Formular 32 

Where PPCC = 1 the data are perfectly normal distributed, while PPCC = 0 indicates no correla on and 
following on that no normal distribu on. The PPCC is compared to a cri cal value cv for a specified 
level of significance α and sample size n. If the PPCC is less than the cri cal value (cv), the null 
hypothesis that the data is normal distributed can be rejected. Sta s cal tables typically give cri cal 
values (cv); but approximated values as func on of n and a significance level of = 0.05 are given by 
the formular men oned below:  

𝑐𝑣(𝑛, ∝ = 0,05) ≈ 1,0063 −
0,1288

√𝑛
−

0,6118

𝑛
+

1,3505

𝑛
  

[18] Formular 33 

The PPCC- test provides in conjunc on with the associated probability plot, a quan ta ve and graphical 
representa on of goodness- to- fit. The advantages of the PPCC- test is that the test sta s c is 
conceptually easy to understand. It combines two fundamentally simple concepts: the probability plot 
and the correla on coefficient. [39] Where the data does not fit a theore cal distribu on, 
nonparametric sta s cal tests should be used. Nonparametric tests require fewer assump ons about 
the data and as they do not rely on the underlying distribu on they are o en referred to as distribu on- 
free. Nonparametric tests can be applied to all distribu ons. 

Generalized Extreme Studen zed Deviate Test for Outliers 

Many outlier tests exist, this essay is focused on the Generalized Extreme Studen zed Deviate Test 
(ESD- Test). The generalized ESD- test [36] is a generaliza on of Grubbs-test. [37] The ESD- test can be 
used to detect one or more outliers in a data set that follows an approximately normal distribu on. 
[36, 30] Manoj and Kannan compared different methods for detec ng outliers and found that 
generalized ESD- test is be er than Grubbs’ and Dixons’ tests. [38] The primary limita on of many tests 
is that the suspected number of outliers, k, must be specified exactly. If k is not specified correctly, this 
can distort the conclusions of these tests. On the other hand, the generalized ESD test only requires 
that an upper bound for the suspected number of outliers be specified. Given the upper bound of 
outliers r, the generalized ESD- test essen ally performs r separate tests: a test for one outlier, a test 
for two outliers, and so on up to r outliers. 

The generalized ESD- test is defined for the hypothesis: 

Null hypothesis; H0:   There are no outliers in the data set 

Alterna ve Hypothesis; H1:  There are up to r outliers in the data set 

If 𝑅 > 𝜆 , then the null hypothesis is rejected. 

The test sta s c is computed as follows: 

𝑅 =
max |x − x|

S
 

Formular 34 
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With �̅�, 𝑥  and S deno ng the arithme c mean the sample and sample standard devia on S, 
respec vely. The suspected extreme observa on has to be removed and then the test sta s c 
𝑅 , 𝑅 , … , 𝑅  has to be recomputed with n - 1 observa ons. This procedure has to be successively 
repeated un l r observa ons have been removed, respec vely tested by the test sta s c 𝜆 . The 
corresponding cri cal value for the test sta s cs can calculate as follows: 

𝜆 =
(𝑛 − 𝑖)𝑡 ,

𝑛 − 𝑖 − 1 + 𝑡 , (𝑛 − 𝑖 + 1)

 𝑖 = 1,2, … , 𝑟 

Formular 35 

Where 𝑡 ,  is the 100p percentage point from the t- distribu on with ν which is the degrees of 
freedom (n-i-1) (Whereupon i represents the removed outlier and n the total number of values) the 
and the significance level α 

𝑝 = 1 −
𝛼

2(𝑛 − 𝑖 + 1)
 

Formular 36 

The number of outliers is determined by finding the largest i such that 𝑅 > 𝜆  

Simula on studies by Rosner indicate that this cri cal value approxima on is very accurate for n ≥ 25 
and only reasonably accurate for n ≥ 15. 

Note: That although the generalized ESD- test is essen ally Grubbs test applied sequen ally, 
there are a few important dis nc ons: The generalized ESD- test makes appropriate 
adjustments for the cri cal values based on the number of outliers being tested for that the 
sequen al applica on of Grubbs test does not. Trying to use Grubbs test sequen ally could 
stop at the wrong itera on and declare no outliers. [35, 36] 

To improve the robustness of the generalized ESD -test a modifica on of the original version was tested. 
The arithme c mean �̅� was replaced by the median 𝑥 and the result showed an increased efficacy of 
the outlier detec on observa on. The test sta s c is computed as follows: 

𝑅 =
𝑚𝑎𝑥 |𝑥 − 𝑥|

𝑆
 

Formular 37 

With 𝑥, 𝑥  and S deno ng the median the sample and sample standard devia on, respec vely. 
Simula ons have illustrated that the modified version of the test, performance is robust compared to 
the classical generalized ESD -test. [38]  

Challenges of Using Outlier Hypothesis Tests 

When performing an outlier test, the analyst needs to choose a procedure based on the number of 
outliers or specify the number of outliers. Other methods, such as the Tietjen- Moore Test, require the 
analysing person to specify the number of outliers. There are two problems that can occur when the 
analyst specifies the incorrect number in a data set.  A kind of masking occurs when too few outliers 
specified. The addi onal outliers that exist can affect the test so that it detects no outliers. Conversely, 
a kind of swamping occurs when too many outliers are specified. In this case, the test iden fies too 
many data points as being outliers. Because of these problems, it is necessary to stay categorical cri cal 
in the applica on of outlier tests.  
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Philosophy about Finding Outliers 

The philosophy based on the use of the in- depth knowledge about all the variables when analysing 
data. Part of this knowledge is knowing what values are typical, unusual, and impossible. When the 
analyst has an in- depth knowledge, it is o en best to use the more straigh orward, visual methods. 
At a glance, data points that are poten al outliers will pop out under a knowledgeable gaze of the 
analyst. Consequently, the use of boxplots, histograms, and old- fashioned data sor ng should be the 
first step. These simple tools provide o en enough informa on to find unusual data points for further 
inves ga on. [9] 

Note: The "Anscombe’s quartet" as an example for the superiority of visual methods:  

Anscombe's quartet comprises four data sets that have nearly iden cal simple descrip ve 
sta s cs, yet have very different distribu ons and appear very different when graphed. Each 
dataset consists of eleven (x, y) points. They were constructed in 1973 by the sta s cian Francis 
Anscombe to demonstrate both the importance of graphing data when analysing it, and the 
effect of outliers and other influen al observa ons on sta s cal proper es. He described the 
ar cle as being intended to counter the impression among sta s cians that "numerical 
calcula ons are exact, but graphs are rough" [41] 

It can be cri cal to use the Zscore and hypothesis tests to find outliers because of their various 
complica ons. Using outlier tests can be challenging because they usually, assume the data follow the 
normal distribu on or like the ESD- test the t-distribu on. Addi onally, the existence of outliers makes 
the Zscore less extreme.  

These methods for iden fying outliers are sensi ve to the presence of outliers. Fortunately, as long as 
researchers use a simple way to display unusual values, a knowledgeable analyst is likely to know which 
values need further inves ga on. 

“In my view, the formal sta s cal tests and calcula ons are overkill because they can't defini vely 
iden fy outliers.” Jim Frost [9] 

Ul mately, analysts must inves gate unusual values and use their exper se to determine whether they 
are legi mate data points. Sta s cal procedures do not know the subject ma er or the data collec on 
process and cannot make the final determina on. The analyst should not include or exclude an 
observa on using only the results of a hypothesis test or sta s cal measure. The analyst should not 
necessarily remove one or all outliers. [9] Random varia on generates occasional extreme values by 
chance; these are part of the valid data and should generally be included in any calcula ons. [13] 
Outliers can be very informa ve about the subject area and data collec on process. It is vital to 
understand how outliers occur and whether they might happen again as a normal part of the process 
or study area. 

Sta s cal Analyses on the basis of alterna ve Methods    

What has to be done when the outliner cannot legi mately remove, but they violate the assump ons 
of the applied sta s cal analysis? The analyst wants to include them but do not want them to distort 
the results. There are various sta s cal analyses applicable for that problem. These sta s cal analyses 
are the nonparametric hypothesis tests which are robust to outliers. For these alterna ves to the more 
common parametric tests, outliers will not necessarily violate their assump ons or distort their results. 
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